
Package: foolbox (via r-universe)
October 9, 2024

Title Function Manipulation Toolbox

Version 0.1.1.9000

Description Provides functionality for manipulating functions and
translating them in metaprogramming.

Depends R (>= 3.2)

License GPL-3

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Roxygen list(markdown = TRUE)

Imports magrittr, rlang (>= 0.3.0)

Suggests covr, testthat, knitr, rmarkdown, microbenchmark

URL https://github.com/mailund/foolbox

BugReports https://github.com/mailund/foolbox/issues

VignetteBuilder knitr

Repository https://mailund.r-universe.dev

RemoteUrl https://github.com/mailund/foolbox

RemoteRef HEAD

RemoteSha 0e74395890b95a82187ca069295c182cd3186bd1

Contents
<.foolbox_pipe . 2
add_call_callback . 3
add_topdown_callback . 4
annotate_assigned_symbols_callbacks . 5
annotate_bound_symbols_in_function . 5
annotate_bound_variables_callbacks . 6

1

https://github.com/mailund/foolbox
https://github.com/mailund/foolbox/issues

2 <.foolbox_pipe

collect_assigned_symbols_in_expression . 6
collect_from_args . 7
depth_first_analyse_expr . 8
depth_first_analyse_function . 9
depth_first_rewrite_expr . 9
depth_first_rewrite_function . 10
identity_rewrite_callback . 11
make_with_callback . 12
merge_bottomup . 12
nop_topdown_callback . 13
remove_formal . 13
remove_formal_ . 14
rewrites . 14
rewrite_callbacks . 15
rewrite_with . 17
warning_flags . 19
[.foolbox_rewrite_spec . 21

Index 22

<.foolbox_pipe This operator is used together with rewrites to transform a function
after it is defined and before it is assigned to a name.

Description

This operator is used together with rewrites to transform a function after it is defined and before
it is assigned to a name.

Usage

S3 method for class 'foolbox_pipe'
pipe < fn

Arguments

pipe A specificiation of a a pipeline of transformations provided using the subscript
operator to rewrites().

fn The function we wish to transform.

See Also

[.foolbox_rewrite_spec

rewrites

add_call_callback 3

Examples

This is a very simple inline function that require we
provide the function body as it should be inserted.
For a more detailed version, see the Tutorial vignette.
inline <- function(f, fn, body) {

body <- substitute(body)
rewrite(f) %>%

rewrite_with(
rewrite_callbacks() %>%

add_call_callback(fn, function(expr, ...) body)
)

}

g <- function(x) x**2
h <- rewrites[inline(g,y**2)] < function(y) y + g(y)
h

add_call_callback Add a function-specific callback to the call callbacks.

Description

This function adds to the existing call callback, rather than replace it, by putting a callback in front
of it to be tested first. The callback will be invoked when the traversal sees a call to a specific
function.

Usage

add_call_callback(callbacks, fn, cb)

Arguments

callbacks The existing callbacks.

fn The function to which calls should be modified.

cb The callback function to invoke.

Details

The callback that is installed will be called with the usual callback arguments (which depend on con-
text and user-provided information to ..., see rewrite_callbacks() and analysis_callbacks()),
and additionally the next callback in line, through the parameter next_cb. This can be used to prop-
agate information through several callbacks in a pipe-like fashion.

Value

The updated callbacks.

4 add_topdown_callback

Examples

f <- function(x) 2 + x
cb <- rewrite_callbacks() %>%

add_call_callback(f, function(expr, ...) {
quote(2 + x)

})
tr_f <- . %>% rewrite() %>% rewrite_with(cb)

g <- function(y) y + f(y)
tr_f(g)

add_topdown_callback Add a function-specific callback to the top-down callbacks.

Description

This function adds to the existing topdown callback, rather than replace it, by putting a callback in
front of it to be tested first. The callback will be invoked when the traversal sees a call to a specific
function.

Usage

add_topdown_callback(callbacks, fn, cb)

Arguments

callbacks The existing callbacks.

fn The function to which calls should be modified.

cb The callback function to invoke.

Details

The callback that is installed will be called with the usual callback arguments (which depend on con-
text and user-provided information to ..., see rewrite_callbacks() and analysis_callbacks()),
and additionally the next callback in line, through the parameter next_cb. This can be used to prop-
agate information through several callbacks in a pipe-like fashion.

Value

The updated callbacks.

annotate_assigned_symbols_callbacks 5

annotate_assigned_symbols_callbacks

Put attribute "assigned_symbols" on expressions bottom-up

Description

Put attribute "assigned_symbols" on expressions bottom-up

Usage

annotate_assigned_symbols_callbacks

Format

An object of class list of length 7.

annotate_bound_symbols_in_function

Annotate sub-expressions with variables bound in their scope.

Description

Extracts all the symbols that appear on the left-hand side of an assignment or as function parameters
and annotate each sub-expression with those.

Usage

annotate_bound_symbols_in_function(fn)

Arguments

fn The function whose body we should analyse

Details

This function will annotate a function’s body with two attributes for each sub-expression in the
body. Each call expression in the body will be annotated with these two attributes:

• assigned_symbols: Variables that appear to the left of an assignment in a sub-expression of
the call that is likely to affect the scope of the call.

• bound: Variables that are either assigned to, thus potentially local in the scope, or function
parameters from an enclosing scope, which will definitely be bound at this position.

6 collect_assigned_symbols_in_expression

Since R does not require that we declare local variables, and since the variables that are assigned to
a local scope depend on the runtime execution of functions, we cannot determine with any certainty
which variables will be assigned to in any given scope at any given program point. So the best we
can do is figure out which variables are potentially assigned to. Which is what this function does.

The rules for when we are assigning to a local variable are a bit complicated. For control structures,
we can assume that assignments will be to the local scope. People can change the implementation
of these so it isn’t, but then they are only hurting themselves and deserve the extra pain we can give
them. For other call arguments, it gets a little more complicated. With standard-evaluation, if we
have an arrow assignment in a function argument, then the assignment happens in the calling scope.
So we will assume this happens unless we are handling cases we know have NSE, such as with. If
an assignment is inside a block, however, we will assume that NSE is in play, by default, and not
consider it a local assignment.

Value

A function who’s expressions are annotated with potentially local variables.

annotate_bound_variables_callbacks

Propagate parameters and local variables top-down to assign at-
tribute "bound" to all call expressions.

Description

Propagate parameters and local variables top-down to assign attribute "bound" to all call expres-
sions.

Usage

annotate_bound_variables_callbacks

Format

An object of class list of length 7.

collect_assigned_symbols_in_expression

Extracts all the symbols that appear on the left-hand side of an assign-
ment.

Description

Since R does not require that we declare local variables, and since the variables that are assigned to
a local scope depend on the runtime execution of functions, we cannot determine with any certainty
which variables will be assigned to in any given scope at any given program point. So the best we
can do is figure out which variables are potentially assigned to. Which is what this function does.

collect_from_args 7

Usage

collect_assigned_symbols_in_expression(expr, env, params = list(),
topdown = list())

collect_assigned_symbols_in_function(fun, topdown = list())

Arguments

expr The expression to analyse

env Environment in which to look up symbols.

params Parameters for the function being analysed (if these are needed).

topdown Information to pass top-down in the traversal.

fun The function whose body we should analyse

Details

The collect_assigned_symbols_in_function() function reformats the collected data into a
character vector, removes duplications, and remove the formal parameters of the function from the
list, so those are not considered local variables (rather, they are considered formals and presumably
handled elsewhere as such).

Value

A list containing the symbols that were assigned to.

Functions

• collect_assigned_symbols_in_expression: Analyse an expression.

• collect_assigned_symbols_in_function: Analyse the body of a function.

collect_from_args Collect attributes set in the arguments to a call expression.

Description

Given a call expression expr, this function scans the arguments to the call and extracts the attribute
attribute from each where the condition predicate evaluates to TRUE, and it concatenates all
these.

Usage

collect_from_args(expr, attribute, condition = function(expr) TRUE,
include_fun = FALSE)

8 depth_first_analyse_expr

Arguments

expr The expression to process.

attribute The attribute we want to collect from the arguments.

condition A predicate. Only arguments where the condition evaluates to TRUE will be
included in the result.

include_fun Include the first element in a call, i.e. the function that will be called.

Value

A list or vector obtained by concatenating the attributes from the arguments.

depth_first_analyse_expr

Analyse an expression.

Description

Traverses the expression expr depth-first and analyse it it using callbacks.

Usage

depth_first_analyse_expr(expr, callbacks, params = list(),
topdown = list(), wflags = warning_flags(), ...)

Arguments

expr An R expression

callbacks List of callbacks to apply.

params Parameters of the function we are analysing. If we are working on a raw expres-
sion, just use the default, which is an empty list.

topdown A list of additional information gathered in the traversal.

wflags Warning flags, see warning_flags().

... Additional data that will be passed along to callbacks.

Value

The result of the last bottom-up traversal.

See Also

analysis_callbacks

identity_analysis_callback

depth_first_analyse_function

depth_first_analyse_function 9

depth_first_analyse_function

Analyse the body of function.

Description

Traverses the body of fn and analyse it based on callbacks.

Usage

depth_first_analyse_function(fn, callbacks, topdown = list(),
wflags = warning_flags(), ...)

Arguments

fn A (closure) function.

callbacks List of callbacks to apply.

topdown A list of additional information that will be considered top-down in the traversal.

wflags Warning flags, see warning_flags().

... Additional data that will be passed along to callbacks.

Value

The result of the last bottom-up call to a callback.

See Also

depth_first_analyse_expr

depth_first_rewrite_function

analysis_callbacks

depth_first_rewrite_expr

Transform an expression.

Description

Traverses the expression expr depth-first and transform it using callbacks.

Usage

depth_first_rewrite_expr(expr, callbacks, params = list(),
topdown = list(), wflags = warning_flags(), ...)

10 depth_first_rewrite_function

Arguments

expr An R expression

callbacks List of callbacks to apply.

params Parameters of the function we are rewriting. If we are working on a raw expres-
sion, just use the default, which is an empty list.

topdown A list of additional information gathered in the traversal.

wflags Warning flags, see warning_flags().

... Additional data that will be passed along to callbacks.

Value

A modified expression.

See Also

rewrite_callbacks

identity_rewrite_callback

depth_first_rewrite_function

depth_first_rewrite_function

Transform the body of function.

Description

Traverses the body of fn and rewrite it based on callbacks.

Usage

depth_first_rewrite_function(fn, callbacks, topdown = list(),
wflags = warning_flags(), ...)

Arguments

fn A (closure) function.

callbacks List of callbacks to apply.

topdown A list of additional information that will be considered top-down in the traversal.

wflags Warning flags, see warning_flags().

... Additional data that will be passed along to callbacks.

Value

A new function similar to fn but with a transformed body.

identity_rewrite_callback 11

See Also

depth_first_rewrite_expr

rewrite_callbacks

identity_rewrite_callback

A callback that does not do any transformation.

Description

Callbacks have one required argument, expr, but will actually be called with more. The additional
named parameters are:

Usage

identity_rewrite_callback(expr, ...)

identity_analysis_callback(expr, bottomup, ...)

Arguments

expr The expression to (not) transform.

... Additional named parameters.

bottomup Information gathered depth-first in analysis callbacks. This parameter is only
passed to callbacks in analysis traversals and not rewrite traversals.

Details

• env The function environment of the function we are transforming

• params The formal parameters of the function we are transforming

• topdown Data passed top-down in the traversal.

• bottomup Data collected by depth-first traversals before a callback is called. plus whatever the
user provide to depth_first_rewrite_function() or depth_first_analyse_function().

• next_cb A handle to call the next callback if more are installed. This variable will be the
callback that was in the callbacks list before this one replaced it.

In bottom up analyses, the merge_bottomup() function can be used to collected the results of
several recursive calls. When annotating expressions, the collect_from_args() can be used in
call callbacks to extract annotation information from call arguments.

Value

expr

12 merge_bottomup

Functions

• identity_rewrite_callback: Identity for expression rewriting

• identity_analysis_callback: Identity for expression rewriting

See Also

merge_bottomup

collect_from_args

make_with_callback Create a function for setting callbacks.

Description

Create a function for setting callbacks.

Usage

make_with_callback(cb_name)

Arguments

cb_name The name of the callback to set

Value

A function that can be used in a pipe to set a callback.

merge_bottomup Merge the results of several bottomup results.

Description

The bottomup parameter in callbacks will be calculated for all parameters of call`` expressions.
The parameter to the callbacks are thus a list of lists. This function merges these lists
into one that contain a list for each named component in the bottomupparameter. If results
are not named in thebottomup‘ list, they are discarded.

Usage

merge_bottomup(bottomup)

Arguments

bottomup List of bottom up analysis results.

nop_topdown_callback 13

Details

The vectors from bottomup are concatenated, so one level of lists will be flattened. Use more lists,
like list(list(2), list(3)) if you want to prevent this.

See Also

depth_first_analyse_function

depth_first_analyse_expr

nop_topdown_callback Top-down analysis callback.

Description

Top-down analysis callback.

Usage

nop_topdown_callback(expr, topdown, skip, ...)

Arguments

expr The expression before we modify it.

topdown Information from further up the expression tree.

skip An escape function. If called, the transformation or analysis traversal will skip
this expression and continue at the sibling level.

... Additional data that might be passed along

Value

Updated topdown information.

remove_formal Remove a parameter from the formal parameters of a function.

Description

Remove a parameter from the formal parameters of a function.

Usage

remove_formal(fn, par)

14 rewrites

Arguments

fn A function we are modifying

par A parameter of fn (should be in formals(fn) and not be quoted)

Value

A modified function equal to fn but with par removed from the formal parameters.

remove_formal_ Remove a parameter from the formal parameters of a function.

Description

Remove a parameter from the formal parameters of a function.

Usage

remove_formal_(fn, par)

Arguments

fn A function we are modifying

par A parameter of fn (should be in formals(fn) and be quoted)

Value

A modified function equal to fn but with par removed from the formal parameters.

rewrites Object for setting up a transformation pipeline when defining functions

Description

Object for setting up a transformation pipeline when defining functions

Usage

rewrites

Format

An object of class foolbox_rewrite_spec of length 1.

rewrite_callbacks 15

Examples

This is a very simple inline function that require we
provide the function body as it should be inserted.
For a more detailed version, see the Tutorial vignette.
For a version that permits partial evaluation, see that vignette.
inline <- function(f, fn, body) {

body <- substitute(body)
rewrite(f) %>%

rewrite_with(
rewrite_callbacks() %>%

add_call_callback(fn, function(expr, ...) body)
)

}

g <- function(x) x**2
h <- rewrites[inline(g,y**2)] < function(y) y + g(y)
h

rewrite_callbacks Default expression-transformation callbacks.

Description

Callbacks must be functions that take three arguments: The expression to rewrite, the environment
of the function we are rewriting (i.e. the environment it is defined in, not the function call frame),
and a list of formal parameters of the function we are translating.

Usage

rewrite_callbacks()

analysis_callbacks()

with_atomic_callback(callbacks, fn)

with_pairlist_callback(callbacks, fn)

with_symbol_callback(callbacks, fn, include_missing = FALSE)

with_primitive_callback(callbacks, fn)

with_call_callback(callbacks, fn)

with_topdown_pairlist_callback(callbacks, fn)

with_topdown_call_callback(callbacks, fn)

16 rewrite_callbacks

Arguments

callbacks The list of callbacks

fn A function to install as a callback.
include_missing

For symbols, it is possible that the expression is missing. This can happen in
pair-lists if a function parameter does not have a default argument. By default,
the callback is not invoked on missing expressions–there is very little you can
do with them – but you can include them by setting this parameter to TRUE.

Details

The flow of a depth-first traversal is as follows:

For expressions that are atomic, i.e. are either atomic values, pairlists, symbols, or primitives, the
corresponding callback is called with the expression. The callbacks are called with the expres-
sion, expr, the environment of the function we are traversing, env, the parameters of that function,
params, information collected top-down in topdown, warning flags through the wflags parameter,
and any additional user-provided arguments through If the callbacks are used in a rewrite
traversal, see depth_first_rewrite_function(), they must return an expression. This expres-
sion will be inserted as a substitute of the expr argument in the function being rewritten. If the
callback is part of an analysis, see depth_first_analyse_function(), then it can return any
data; what it returns will be provided to the callbacks on the enclosing expression via the bottomup
parameter.

For call expressions, the topdown callback is invoked before the call is traversed. It is provided
with the same arguments as the other callbacks and in addition a thunk skip that it can use to
prevent the depth-first traversal to explore the call further. Whatever the topdown callback returns
will be provided to the call callback via the argument topdown it it is called (i.e. if the topdown
callback doesn’t invoke skip).

After the topdown callback is executed, if it doesn’t call skip, the call callback is called on the ex-
pression. It is called with the same arguments as the other callbacks, and must return an expression
if part of a rewrite traversal or any collected information if part of an analysis traversal.

Functions

• rewrite_callbacks: Default callbacks for rewriting expressions

• analysis_callbacks: Default callbacks for analysing expressions

• with_atomic_callback: Set the atomic callback function.

• with_pairlist_callback: Set the pairlist callback function.

• with_symbol_callback: Set the symbol callback function.

• with_primitive_callback: Set the primitive callback function.

• with_call_callback: Set the call callback function.

• with_topdown_pairlist_callback: Set the topdown information-passing callback function
for pair-lists

• with_topdown_call_callback: Set the topdown information-passing callback function for
calls.

rewrite_with 17

See Also

with_atomic_callback

with_symbol_callback

with_primitive_callback

with_pairlist_callback

with_call_callback

with_topdown_pairlist_callback

with_topdown_call_callback

warning_flags

Examples

f <- function(x) 2 + x
cb <- rewrite_callbacks() %>%

add_call_callback(f, function(expr, ...) {
quote(2 + x)

})
tr_f <- . %>% rewrite() %>% rewrite_with(cb)

g <- function(y) y + f(y)
tr_f(g)

collect_symbols <- function(expr, ...) {
list(symbols = as.character(expr))

}
callbacks <- analysis_callbacks() %>% with_symbol_callback(collect_symbols)
f %>% analyse() %>% analyse_with(callbacks)

rewrite_with Functions for applying a sequence of rewrites.

Description

The rewrite() function applies a series of transformations to an input function, fn and returns the
result. This result can then be used in a pipeline of rewrite_with() calls for further analysis.

Usage

rewrite_with(fn, callbacks, ...)

rewrite(fn)

analyse(fn)

analyse_with(fn, callbacks, ...)

18 rewrite_with

rewrite_expr(expr)

rewrite_expr_with(expr, callbacks, ...)

analyse_expr(expr)

analyse_expr_with(expr, callbacks, ...)

Arguments

fn The function to rewrite

callbacks The callbacks that should do the rewriting

... Additional parameters passed along to the callbacks.

expr When invoked on expressions, in rewrite_expr(), the expression to rewrite.

Details

The flow of transformations goes starts with rewrite() and is followed by a series of rewrite_with()
for additional rewrite callbacks. For analysis, it starts with analyse() and is followed by a pipeline
of analyse_with().

This functions will annotate a function’s body with two attributes for each sub-expression in the
body. Each call expression in the body will be annotated with these two attributes:

• assigned_symbols: Variables that appear to the left of an assignment in a sub-expression of
the call that is likely to affect the scope of the call.

• bound: Variables that are either assigned to, thus potentially local in the scope, or function
parameters from an enclosing scope, which will definitely be bound at this position.

Since R does not require that we declare local variables, and since the variables that are assigned to
a local scope depend on the runtime execution of functions, we cannot determine with any certainty
which variables will be assigned to in any given scope at any given program point. So the best we
can do is figure out which variables are potentially assigned to. Which is what this function does.

The rules for when we are assigning to a local variable are a bit complicated. For control structures,
we can assume that assignments will be to the local scope. People can change the implementation
of these so it isn’t, but then they are only hurting themselves and deserve the extra pain we can give
them. For other call arguments, it gets a little more complicated. With standard-evaluation, if we
have an arrow assignment in a function argument, then the assignment happens in the calling scope.
So we will assume this happens unless we are handling cases we know have NSE, such as with. If
an assignment is inside a block, however, we will assume that NSE is in play, by default, and not
consider it a local assignment.

Value

A rewritten function

warning_flags 19

Functions

• rewrite_with: Apply callbacks over fn to rewrite it.

• rewrite: Function for starting a rewrite.

• analyse: Function for running analysis callbacks

• analyse_with: Apply callbacks over fn to analyse it.

• rewrite_expr: Expression version of rewrite()

• rewrite_expr_with: Expression version of rewrite_with()

• analyse_expr: Expression version of analyse()

• analyse_expr_with: Expression version of analyse_with()

See Also

rewrite_callbacks

Examples

f <- function(x) 2 + x
cb <- rewrite_callbacks() %>%

add_call_callback(f, function(expr, ...) {
quote(2 + x)

})
tr_f <- . %>% rewrite() %>% rewrite_with(cb)

g <- function(y) y + f(y)
tr_f(g)

collect_symbols <- function(expr, ...) {
list(symbols = as.character(expr))

}
callbacks <- analysis_callbacks() %>% with_symbol_callback(collect_symbols)
f %>% analyse() %>% analyse_with(callbacks)

warning_flags Collection of warning flags used when traversing expressions.

Description

These are flags for turning warnings on or off when traversing expression trees.

20 warning_flags

Usage

warning_flags()

set_warn_on_unknown_function(flags)

unset_warn_on_unknown_function(flags)

set_warn_on_local_function(flags)

unset_warn_on_local_function(flags)

Arguments

flags Used when setting or unsetting flags.

Details

The flags can be provided to transformation and analysis functions, and be set or unset by the
set_/unset_ functions. The meaning of the flags are:

• warn_on_unknown_function: If you have installed a callback with add_call_callback()
or add_topdown_callback(), the traversal code will check if a given call is to a known
function installed by one of these. If the function name of a call is not recognised as a function
parameter or a local variable, as annotated with annotate_bound_symbols_in_function(),
then the code will issue a warning if this flag is set. The warning behaviour depends on whether
annotate_bound_symbols_in_function() has analysed the function. If it hasn’t, then we
only consider function parameters as local variables. If it has, we have more information about
the local variables, so we can make the warnings more accurate. The flag is set by default.

• warn_on_local_function: If you have installed a callback with add_call_callback() or
add_topdown_callback(), the traversal code will check if a given call is to a known function
installed by one of these. If you have installed a function that has a name-clash with a local
variable, and this flag is set, then you will get a warning. If you have annotated the expression
tree using annotate_bound_symbols_in_function(), then the warning will be invoked both
on local variables and function parameters; if you have not annotated the expression tree, then
it will only be invoked on function arguments. The flag is set by default.

Since R is a very dynamic language, it is not possible to know which local variables might refer
to functions and which do not – and R will look for functions if a variable is used as a call and
potentially skip past a local variable that refers to a non-function – so the warnings are based on
heuristics in identifying local variables and are conservative in the sense that they assume that if a
call is to a name that matches a local variable, then it is the local variable that is being called.

Functions

• set_warn_on_unknown_function: Enable warnings when encountering an unknown func-
tion

• unset_warn_on_unknown_function: Disable warnings when encountering an unknown func-
tion

[.foolbox_rewrite_spec 21

• set_warn_on_local_function: Enable warnings when encountering a local variable with a
name that matches one installed for transformation.

• unset_warn_on_local_function: Disable warnings when encountering a local variable with
a name that matches one installed for transformation.

[.foolbox_rewrite_spec

Provide list of rewrite transformations.

Description

This subscript operator is used together with rewrites to specify a sequence of transformations to
apply to a new function we define.

Usage

S3 method for class 'foolbox_rewrite_spec'
dummy[...]

Arguments

dummy The dummy-table rewrites. It is only here because it allows us to use subscripts
as part of the domain-specific language.

... A list of rewrite functions.

See Also

<.foolbox_pipe

rewrites

Examples

This is a very simple inline function that require we
provide the function body as it should be inserted.
For a more detailed version, see the Tutorial vignette.
inline <- function(f, fn, body) {

body <- substitute(body)
rewrite(f) %>%

rewrite_with(
rewrite_callbacks() %>%

add_call_callback(fn, function(expr, ...) body)
)

}

g <- function(x) x**2
h <- rewrites[inline(g,y**2)] < function(y) y + g(y)
h

Index

∗ datasets
annotate_assigned_symbols_callbacks,

5
annotate_bound_variables_callbacks,

6
rewrites, 14

<.foolbox_pipe, 2
[.foolbox_rewrite_spec, 21

add_call_callback, 3
add_call_callback(), 20
add_topdown_callback, 4
add_topdown_callback(), 20
analyse (rewrite_with), 17
analyse(), 18, 19
analyse_expr (rewrite_with), 17
analyse_expr_with (rewrite_with), 17
analyse_with (rewrite_with), 17
analyse_with(), 18, 19
analysis_callbacks (rewrite_callbacks),

15
analysis_callbacks(), 3, 4
annotate_assigned_symbols_callbacks, 5
annotate_bound_symbols_in_function, 5
annotate_bound_symbols_in_function(),

20
annotate_bound_variables_callbacks, 6

collect_assigned_symbols_in_expression,
6

collect_assigned_symbols_in_function
(collect_assigned_symbols_in_expression),
6

collect_assigned_symbols_in_function(),
7

collect_from_args, 7
collect_from_args(), 11

depth_first_analyse_expr, 8
depth_first_analyse_function, 9

depth_first_analyse_function(), 11, 16
depth_first_rewrite_expr, 9
depth_first_rewrite_function, 10
depth_first_rewrite_function(), 11, 16

identity_analysis_callback
(identity_rewrite_callback), 11

identity_rewrite_callback, 11

make_with_callback, 12
merge_bottomup, 12
merge_bottomup(), 11

nop_topdown_callback, 13

remove_formal, 13
remove_formal_, 14
rewrite (rewrite_with), 17
rewrite(), 17–19
rewrite_callbacks, 15
rewrite_callbacks(), 3, 4
rewrite_expr (rewrite_with), 17
rewrite_expr(), 18
rewrite_expr_with (rewrite_with), 17
rewrite_with, 17
rewrite_with(), 17–19
rewrites, 2, 14, 21
rewrites(), 2

set_warn_on_local_function
(warning_flags), 19

set_warn_on_unknown_function
(warning_flags), 19

unset_warn_on_local_function
(warning_flags), 19

unset_warn_on_unknown_function
(warning_flags), 19

warning_flags, 19
warning_flags(), 8–10

22

INDEX 23

with_atomic_callback
(rewrite_callbacks), 15

with_call_callback (rewrite_callbacks),
15

with_pairlist_callback
(rewrite_callbacks), 15

with_primitive_callback
(rewrite_callbacks), 15

with_symbol_callback
(rewrite_callbacks), 15

with_topdown_call_callback
(rewrite_callbacks), 15

with_topdown_pairlist_callback
(rewrite_callbacks), 15

	<.foolbox_pipe
	add_call_callback
	add_topdown_callback
	annotate_assigned_symbols_callbacks
	annotate_bound_symbols_in_function
	annotate_bound_variables_callbacks
	collect_assigned_symbols_in_expression
	collect_from_args
	depth_first_analyse_expr
	depth_first_analyse_function
	depth_first_rewrite_expr
	depth_first_rewrite_function
	identity_rewrite_callback
	make_with_callback
	merge_bottomup
	nop_topdown_callback
	remove_formal
	remove_formal_
	rewrites
	rewrite_callbacks
	rewrite_with
	warning_flags
	[.foolbox_rewrite_spec
	Index

